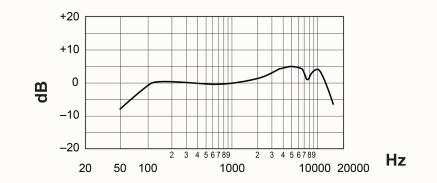
www.leedsconservatoire.ac.uk

Recording Audio

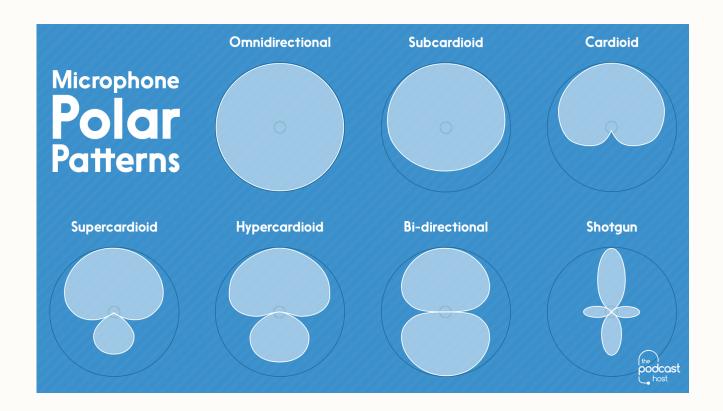
Chris Milnes


Introduction

- In this presentation we will look at some ideas to achieve the best quality sound when using microphones.
- We'll first begin by looking at how microphones work, and then move on to some practical examples for common instruments.
- These are all just guidelines, and not always fixed rules, but they are a very useful place to start most of the time.

Frequency response

Every type of microphone has a frequency response. This is the ability of the microphone to handle each frequency supplied to it, and it is typically shown in a graph format, of frequency vs amplitude, like the one below. This is the frequency response of a dynamic microphone, the Shure SM58. The frequency response characterises each different microphone, as they all handle sound differently.



Polar Patterns

- As well as different frequency responses, different microphones have different polar patterns. A polar pattern is the area in which a microphone picks up sound, and there are a number of different options.
- The most common polar patterns are cardioid, figure 8 and omnidirectional.

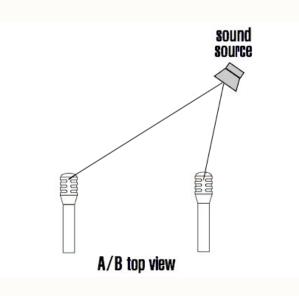
LEEDS Conservatoire

The image below shows different polar patterns of microphones. Ribbon microphones are Bi-directional (Figure 8), but dynamic and condenser microphones can vary, or be switchable between different patterns.

Directionality & Proximity Effect

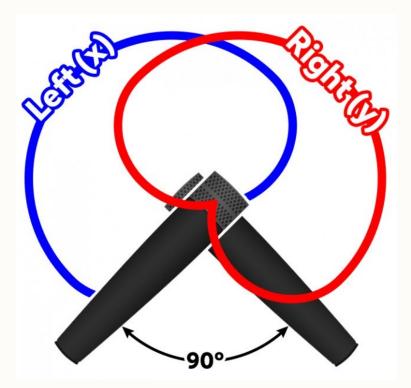
- The frequency response of a microphone will change depending on the way a microphone is facing, and also how far away it is from the source.
- For example, microphones tend to pick up more bass and low end when the course is closer to them, so it could be a creative decision to move a more breath-y delicate singer closer to the microphone to increase the bass response.

Pad & Low Cut


- Often, microphones will have a switch on the front which will allow the polar pattern to be changed.
- Another switch they're likely to have is a low cut. This cuts out the low frequencies from the signal, and allows the higher frequencies to pass through.
- Some microphones also have a -10 or -20 dB pad switch, which is useful when recording high SPL (very loud) sounds, as it can prevent the signal from distorting.

Microphone placement

- Due to polar patterns, directionality and proximity effect have such an affect on frequency response. Microphone placement is a really important part of the recording process in terms of achieving the specific sound you're after.
- It's especially important when using two microphones to pick up a stereo signal.
- We'll look at some simple stereo microphone placement techniques.


Spaced Pair

- A spaced pair is the most common stereo mic technique, and also the simplest to understand.
- It is essentially having two microphones spaced apart from each other, both picking up one sound source. It is very commonly seen used for drum overheads.
- It can work with microphones of any polar pattern, but is most commonly seen using cardioid or omnidirectional.

XY Pair

- LEEDS Conservatoire
- An XY pair is a simple stereo microphone technique that allows an accurate stereo image of a source, as a listener might hear it in reality.
- It consists of two cardioid microphones placed one on top of the other, with a predetermined angle of separation. The example on the left shows an angle of 90 degrees.
- This means the microphone on the left will pick up the sound on the right of the image, and vice versa.
- This technique work well for drum room mic'ing, and for close mic'ing of instruments.

Acoustic Guitar

A common approach to mic'ing an acoustic guitar is to use two small diaphragm condenser microphones as a stereo pair, with one pointing around the 12th fret, and one at the bridge. These will then blend together to create a well rounded image of the guitar's sound.

Guitar amp

Guitar amps

- Most of the time, dynamic microphones are used for guitar amps.
- A good starting point with positioning is to place the mic a finger width away from the front grille of the amp.
- If you move the microphone toward the centre of the speaker, there will be more low end.
- If you move the microphone toward the edge of the speaker, there will be more high end.

Piano

Using two microphones inside the piano is the most common way to record a piano. It's common to see one microphone used to pick up the lower notes on the piano, and one for the higher, which are then blended in post production.

LEEDS Conservatoire

Upright Piano

A similar example on an upright piano sees two small diaphragm condenser microphones used. One for the low end and one for the high.

Drums

The Classic

- The previous slide shows the "classic" approach to mic'ing drums. Each drum is close mic'd, with a snare top and bottom. The overheads are a spaced pair, which both point toward the centre of the snare drum.
- Variation is encouraged with this approach, as small changes can yield great results.

One mic approach

One Mic

- The one mic approach with drums works well when using one large diaphragm condenser, facing the tummy of the drummer.
- Drums can also be recorded effectively using one microphone as a mono overhead, again preferably a large diaphragm condenser.
- The one mic approach can be improved drastically with the addition of a kick drum mic.

www.leedsconservatoire.ac.uk

Thank You